7.3 Multiple linear regression
We can, of course, extend this to include multiple continuous explanatory variables of interest just as we did with ANOVA for multiple categorical explanatory variables!
Here is an example to whet your appetite. Let’s say we want a multiple regression model that includes both Education
and Catholic
?
##
## Call:
## lm(formula = Fertility ~ Education + Catholic, data = swiss)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.042 -6.578 -1.431 6.122 14.322
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 74.23369 2.35197 31.562 < 2e-16 ***
## Education -0.78833 0.12929 -6.097 2.43e-07 ***
## Catholic 0.11092 0.02981 3.721 0.00056 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.331 on 44 degrees of freedom
## Multiple R-squared: 0.5745, Adjusted R-squared: 0.5552
## F-statistic: 29.7 on 2 and 44 DF, p-value: 6.849e-09
Or if we really want to get crazy with the hot sauce:
full_mod <- lm(
Fertility ~ Agriculture + Examination + Education + Catholic,
data = swiss
)
summary(full_mod)
##
## Call:
## lm(formula = Fertility ~ Agriculture + Examination + Education +
## Catholic, data = swiss)
##
## Residuals:
## Min 1Q Median 3Q Max
## -15.7813 -6.3308 0.8113 5.7205 15.5569
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 91.05542 6.94881 13.104 < 2e-16 ***
## Agriculture -0.22065 0.07360 -2.998 0.00455 **
## Examination -0.26058 0.27411 -0.951 0.34722
## Education -0.96161 0.19455 -4.943 1.28e-05 ***
## Catholic 0.12442 0.03727 3.339 0.00177 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.736 on 42 degrees of freedom
## Multiple R-squared: 0.6498, Adjusted R-squared: 0.6164
## F-statistic: 19.48 on 4 and 42 DF, p-value: 3.95e-09